Edinburgh scientists use Neptune to reveal secrets of icy planets

A size comparison of Earth and Neptune, the eighth and farthest known planet from the Sun. Picture: Wikicommons
A size comparison of Earth and Neptune, the eighth and farthest known planet from the Sun. Picture: Wikicommons
Share this article
0
Have your say

Scientists at the University of Edinburgh have helped solve the mystery of what lies beneath the surface of the most distant planet in our solar system.

An international study has shed light on the chemical make-up of Neptune, which lies around 4.5 billion kilometres from the sun.

Extremely low temperatures on planets like Neptune – called ice giants – mean that chemicals on these distant worlds exist in a frozen state, researchers said.

Frozen mixtures of water, ammonia and methane make up a thick layer between the planets’ atmosphere and core – known as the mantle. However, the form in which these chemicals are stored is poorly understood.

Using laboratory experiments to study these conditions is difficult, as it is very hard to recreate the extreme pressures and temperatures found on ice giants.

Researchers at Edinburgh ran large-scale computer simulations of conditions in the mantle. By looking at how the chemicals there react with each other at very high pressures and low temperatures, they were able to predict which compounds are formed in the mantle.

The team found that frozen mixtures of water and ammonia inside Neptune – and other ice giants, including Uranus – are likely to form a little-studied compound called ammonia hemihydrate.

The findings will influence how ice giants are studied in future and could help astronomers classify newly discovered planets as they look deeper into space.

The study, published in the journal Proceedings of the National Academy of Sciences, was supported by the Engineering and Physical Sciences Research Council. The work was carried out in collaboration with scientists at Jilin University, China.

Dr Andreas Hermann, of Edinburgh’s centre for science at extreme conditions, said: “This study helps us better predict what is inside icy planets like Neptune.

“Our findings suggest that ammonia hemihydrate could be an important component of the mantle in ice giants, and will help improve our understanding of these frozen worlds. Computer models are a great tool to study these extreme places, and we are now building on this study to get an even more complete picture of what goes on there.”